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Abstract 
In this paper, active buckling control of a beam using piezoelectric materials is 

investigated. Under small deformation, mathematical models are developed to describe the 
behavior of the beams subjected to an axial compressive load with geometric imperfections and 
load eccentricities under piezoelectric force. Two types of supports, simply supported and 
clamped, of the beam with a partially bonded piezoelectric actuator are used to illustrate the 
concept. For the beam with load eccentricities and initial geometric imperfections, the load- 
carrying capacity can be significantly enhanced by counteracting moments from the piezoelectric 
actuator. For the single piezoelectric actuator, using static feedback closed-loop control, the first 
buckling load can be eliminated. In the case of initially straight beams, analytical solutions of the 
enhanced first critical buckling load due to the increase of bending stiffness by piezoelectric 
actuators are derived based on linearized buckling analysis. 

Introduction 

The stability of large space structures is of critical importance in connection with the 
deployment of large or precision structures in outer space for various missions. The space 
structures are very flexible in many cases and may be very long up to loom, thus, initial 
imperfection is not avoidable; especially the materials will be rigidized in the outer space. 
Therefore it is necessary to control the elastic deformation and stability for proper performance. 
One approach to controlling structural stability is to incorporate active materials into the 
structural elements in which local strains can be actuated and regulated. Actuated strain is that 
component of the strain that is due to stimuli other than mechanical stress. Piezoelectric 
materials, which exhibit mechanical deformation when an electric field is applied, have recently 
received attention because of their potential application to the control of the flexible structure. 
These materials, bonded to the surface of a structural member, transfer forces to the structural 
member according to the magnitude of excitation voltage applied to them. These forces exerted 
by the piezoelectric materials may be employed to actively control the deformation and enhance 
the buckling strength of the structure. Active control allows members to be loaded beyond their 
critical buckling load by using sensors to monitor and detect the onset of buckling and applying 
actuation forces by piezoelectric actuators to restore the member towards the undeflected 
position. 

Utilizing shape memory alloys, Ro and Baz investigated NiTinol reinforced plates and 
showed that the NiTinol fibers which are pre-tensioned and activiated can increase the critical 
buckling load. For simply supported plate with ah = 1 the ratios of the critical load to that of the 
plain plate are 2.60 - 7.04. The corresponding ratios are 1.06 - 2.72 for clamped plate. 

Meressi and Paden [ 11 analyzed numerically the vibration of a simply supported straight 
beam with piezoelectric actuators subjected to an axial compressive load. The design of a 
feedback control system is used to increase the bending stiffness of the first buckling mode. The 
numerical result indicated that buckling of the simply supported beam could be postponed 
beyond the first critical buckling load, and the beam can support up to the buckling load of the 
second mode. Chanrashekhara and Bhatia [2] numerically simulated active control of an ideal 
laminated composite plates utilizing piezoelectric material. The plate was subjected to a linearly 
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increasing axial compressive load. The piezoelectric sensor output is used to determine the input 
to the actuators using a proportional control algorithm. Employing active control, full activation 
is generated after the lateral deflection exceeds a threshold value of one tenth of the plate 
thickness, and remains activated thereafter. The finite element solutions demonstrated that active 
control increased critical load about 4%. Berlin [3] has shown experimentally .that the active 
control can increase the load-bearing strength of a compressively loaded member by employing a 
prototype actively-controlled column. 

Within the above literatures, all the structures are assumed to be uniform with no 
imperfections and loading eccentricities. Due to these effects, the beams are deflected at the 
onset of compressive loading. Utilizing piezoceramic actuators, experiments of active control of 
column were conducted by Thompson and Loughlan [4]. The results shown that the active 
column can counteract the effects of imperfections enhance the buckling loads, and increases in 
load carrying capability are of the order of 19.8%-37.1%. A study of the piezoelectric effects on 
the behavior of initially imperfect composite slender (Euler-Bernoulli) beams under compression 
was conducted [5]. The finite element results showed that, for a simply supported beam, suitable 
voltages can be applied to the piezoelectric actuators attached to the imperfect beam in order to 
render its equilibrium path as close as possible to of the ideal perfect structure, and effectively 
reduce the deflections due to the initial imperfections. Berlin [6] presented experimental results 
showing that a modal controller stabilized column with axial loads up to 5.6 times the critical 
buckling load using piezoactuators. 

In this paper, using piezoactuators, a technique for active buckling control of a beam with 
imperfections and eccentricity of loading has been developed. The sensor is used to measure the 
deformation, which provides the input to the actuators. The actuators are activated and controlled 
voltage is applied after the lateral deflection exceeds deflection allowable. The theoretical results 
obtained show that the active control dramatically increases the load-carrying capability of a 
beam under compressive load. The critical buckling load for a simply supported beam can reach 
the second buckling load, while the critical buckling load is increased significantly for a 
cantilever beam, and it can be several times of the first buckling load. 

Mathematical Formulation 

Consider a beam with a symmetric piezoelectric actuator pair bonded to the top and 
bottom of its surface. Assuming the cross section of the beam is symmetric with respect to the 
neutral axis. The beam is subjected to an axial compressive load and a moment is applied to the 
beam by the piezoactuators. The bending moment is excited by the two actuators being driven 
out of phase. 

From the linear piezoelectric constitutive equations, the axial stress-strain relation for the 
piezoactuator can be expressed as 

(1) 

where 
A = Vd,, It, 
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Here, the subscript a refers to the actuator, to is the thickness of a piezoelectric, A is the free 
piezoelectric strain which depends on the applied voltage V, and the piezoelectric strain constant 
d31- 

For the beam the stress-strain expression can be written as 

E, = u b / E b  
Here, the subscript b refers to the beam. 

For the combined structure under small deflections, a linear strain distribution can be 
assumed across the structure thickness, 

& = - Z W W  (3) 

where w is the transverse deflection. 

Employing symmetry about the neutral axis, the moment equilibrium condition for any 
location which is covered by the piezoactuators can be expressed as follows: 

[ObZdA -k L:ZdA=hf (4) 

where A is the cross sectional area and M is the externally applied moment. 

Substituting eqs. (l), (2), and (3), into eq. (4), the governing equation for the combined 
structure yields 

(EoIu + EbIb)wW = - hf - M a  ( 5 )  

where Mu = 2EuAA,d is the actuator induced bending moment; A, is cross sectional area of a 
piezoelectric actuator and d is the distance fiom the neural axis to the centroid of the 
piezoelectric actuator. 

In practice, the beam is not perfectly straight and the applied load does not necessarily 
pass through the centroid of the cross section. It is therefore necessary to study the behavior of 
beams of imperfect geometries and of beams for which the load is applied eccentrically. Note 
that M in eq. ( 5 )  is due to the axial compressive load only. The bending moment M can also 
includes the contribution due to the imperfection of the beam and eccentricities of the load P. 
The general governing equations of a simply supported beam under axial compressive load can 
be derived fiom the principle of virtual work given below. 
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Fig. 1 A simple supported beam with a piezoelectric actuator under geometric imperfections and 
load eccentricities 

A simply supported beam with small initial geometric imperfections is shown in Fig. 1. 
The beam is under an axial compressive load P with eccentricity eA and eB at the left and the 
right ends respectively. The beam is covered by a pair of piezoelectrics from XI < x < XZ. 

Voltages are applied to the piezoelectric actuators bonded to the beam symmetrically. We may 
write the principle of virtual work for the present problem as 

I, a,S&,dV-PS - [(w'+wl,)' -w';]dx - M , m ( O ) + M , w ( e ) = o  (6)  {; I 
where wo is the initial shape of the axis of the beam, w the deflections due to deformation, MA = 
PeA, MB = PeB. 

In eq. (6), the arbitrary infinitesimal virtual displacements SW satisfy the prescribed geometrical 
conditions 

w(0) = w(l) = 0 (7) 

After some calculation, eq. (6) via eq. (l), (2), and (3) can be simplified to 

where 

M = ja , zdA,  M a  = 1 E h d A  

M = -Eb.Ib W" , 

M = - ( E a I a  + E b l b ) w " - M , ,  forxl<x<xz 

A A. 

for O < x < x ,  or x2 < x < l  

[w],=, and [w'],=., represent the difference in w and w' values across the location x = x, 
respectively 

From eq. (8), we obtain the governing differential equations 

M"-[ P( w + Wo )]" = 0 

and the corresponding boundary conditions 

M(O)=MA,aIld M(e)=Mg 
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with continuity conditions [ w] = [w'] = 0 at x = X I  or x = x2, 

Integrating eq. (9) twice with eq. (lo), the equilibrium equation of moment for the beam is 

E b I b d ' = - P [ w + w o + e ,  + ( e ,  -e,)x/I], for O < x < x ,  or x2 < x < C  

(E,I,  +EJ,)w"=-M, - q w + w ,  + e ,  +(e, - e , ) x / e ] ,  for x, < x < x 2  (11) 

Due to these effects the beam is deflected at the onset of compressive loading. Therefore, 
for practical purposes the critical load represents the maximum load-carrying capacity of an 
elastic beam, because excessive deflections are not acceptable in most applications. In the 
following, elimination of the first buckling load of a simply supported beam by using the 
piezoelectric actuators will be investigated. First, the bending deformation due to the 
piezoelectric actuators, initial imperfections, load eccentricity under the axial compressive load 
will be separately derived. Then the active buckling control by a closed-loop feedback control 
will be considered. The buckling control of a clamped beam will be briefly derived in Appendix 
B. 

Active Buckling Control of Simply Supported Beam 

(a) Bending deformation of the beam with active piezoelectric actuators 

A straight beam is subjected to an axial compressive load P without eccentricity, and 
moments are applied by the piezoactuators on a portion of the beam with no imperfections. The 
differential equations for the three parts of the deflection curve are 

EbIbd'  = - h, 0 < x <  ( I -a ) /2  

(!-a)/2 < x <  ( I + a ) / 2  

( I + a ) / 2  < x <  e 
(E, I ,  + EbIb )W" = - Pw - M ,  , (6)  

Eb Ib W" = - Pw, 

where Y is the applied voltage on the piezoelectric with z > 0, -Yon the piezoelectric with z < 0. 

To satisfy the end conditions 

w = 0 atx=Oand! (7) 

solutions of the equations can be written in the form 

w =  Bsink,x, for 0 < x < e,  
w = C cos k2x + D sin k,x - ,!? d ,  

w=F(-tank,tcosk,x + sink,x), for e ,  < x < ! 

for I, < x < t2  

where 
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t', = (!-a)/2, t', = ( t ' + a ) / 2 ,  

p = 2Ea A, A I P . 

Physically, p represents the ... The integration constants B, C, D and F can be determined from 
the conditions that the portions of the deflection curve have the same deflection and slope at x = 

t' I and ! , , respectively. Thus 

where 

(Ccosk,!, + Dsink,!, - p d  ) 
1 

sink,!, 
B =  

-COS k,! F =  ( Ccosk,!, + Dsink,!, - p d  ) 
sink,! 

I cosk,!, + ysink,!, sink,!, - ycosk,!, 
cosk,!, - ysink,!, sink,!, + ycosk,!, 

A = [  

Note that the equation det A = I A I = 0 gives 

( 1- y2  )sin k,a + 2ycosk,a = 0 (13) 

Eq. (13) provides the buckling loads for the host beam with inactive actuators ( V =  0). 

(b) Bending deformation of the beam with initial geometric imperfections 

In general, an initial imperfection shape on a simply supported beam can be given by a 
series of sine fimctions 

nm w, = 2 a, sin- 
n=1,2,3 24 

The series can be made to represent any initial curve with a degree of accuracy in which depends 
upon the number of terms taken. 

Let w denote the deflection produced by the external axial compressive force. Then w due 
to deformation is determined in the usual way from the differential equations 
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EbIbw"= - P( w + W, ), ( e + a ) / 2  < x <  e 
Without loss of generosity, let wo be the arbitrary term 

w, = a ,s innm/ t  

Considering the boundary conditions 

w(o) = w(e) = o 
solutions of the equations can be written in the form 

w = B sin k, x + unf, sin n m / e,  
w=Ccosk,x+Dsink,x + a, f2s innm/! ,  e, < x < t2  (18) 

w=F(-tank,lcosk,x + sink,x) + a , f , s innm/ t ,  

0 < x < e 1  

e 2 < x < e  

where 

a2 
n -a2 

P P 

f,= 2 9 f 2 =  2 
a, 

n -al 9 

Applying the conditions which indicate the parts of the deflection curve have the same deflection 
and common tangent at x = e, and e 2 ,  the constants of integration are given by 

[ Ccosk,t, +Dsink2t,  +a,(f2 -f,)sinnnt, / e ]  (20) 

(21) 

1 
sin k, e, B =  

-COS k,! F =  [ Ccosk2d2 +Dsink2t2 +a,(f2 -f,)sinnnl,/!] 
sin k, t  , 

where 

nn b, =-ycosnd, / t -s innnt ,  l e ,  
k2t 
n n  
k2t  

b =--ycosnnl,/t-sinnd,/!. 
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(c) Bending deformation of the beam with axial load eccentricity 

of load eccentricity e, the deflection curve may be written in the form 
If the axial compressive forces P are applied at the ends of the beam with the same amount 

w = e(cos k,x - 1) + Bsin k,x , 

w = Ccos k,x + Dsin k,x - e ,  

o < X < e ,  

e ,  < x < e 2  

cosk x 
cos k, ! 

w = F(- tan k,! cos k,x + sin k,x) + e ( A  - 1) , e x < e 

Applying the continuity conditions at x = ! , and ! , , we can find the constants B, C, D and F: 

(Ccosk,!, + Dsink,!, -ecosk,!,) 
1 

sink,!, 
B =  

1 
- COS k,! cos k, e , F =  (Ccosk,!, +Dsink,e2 -e 
sink,!, cos k, ! 

To increase the critical buckling load for the beam a combination of sensors and actuators 
can be used. The sensor can detect small deformation in the beam, while the actuators are 
utilized to provide a restoring moment within the beam if necessary. The moment will push the 
beam towards its equilibrium position when the deflection at some particular points is beyond the 
equilibrium position. Hence, the combination may prevent (eliminate) buckling in the first 
buckling mode, and increase the load carrying capability. The active control may be outlined 
below. 

Under the assumption of small deflections, if both compressive load and voltage are 
applied to the beam, according to superposition principle, the total deflection w is 

w = Wa + W, (26) 
where w,,, is the deflection of the beam due to the compressive load P ( V  = 0) and Wa the 
deflection due to the voltage calculated for a straight beam, which was discussed in the previous 
section. 

Actually, we may control the deflection at the center of the beam to stabilize the beam 
against buckling in the first mode. 

Let 4 be the maximum deflection at the center of the beam, x = e / 2 ,  under design load, 
S, be the deflection at the center measured by the sensor before the actuators are active. 

If la,,, 1 > 16, I , the actuators are to be active such that the resultant deflection at the center is 
a d ,  i. e., 

& + & = s d  (27) 

I 
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Here & is the deflection at the center of the host beam due to the voltage V, and 4 was given in 
the previous discussion. 

Expressing & as 

6, = p d Z a  

From the eq. (27), we have 

The above equation provides a controlled voltage to remove unacceptable deflections and 
restore the beam center to its original position with the design threshold when the deflection is 
beyond the acceptable value. For a simply supported beam with imperfections, or eccentricity of 
loading, it can be proved that the first buckling mode is eliminated, and the critical load for the 
beam with active control can reach the second buckling mode without control. Similarly, 
preventing buckling in the second mode is possible if another pair of actuators is used to control 
of deflection at another point. Thus, the first two buckling modes can be stabilized. 

Enhanced First Buckling Load of Initially Straight Beam using Piezoelectric 
Actuators 

It is assumed that the beam was initially perfectly straight, and the compressive load P is 
applied through the centroids of the cross section. A cantilever beam shown in the Fig. 1 is 
partially covered by the actuator and is subjected to an axial compressive load P. The 
differential equations for the two portions of the deflection curve then become 

EbIbwT = P(6 - w,), e, < x < .t (30) 

where 6is the deflection at the end of the beam. 

‘piezoactuator q v  
+ Z  

Fig. 1 A clamped beam with piezoelectric actuators under axial compressive load 

The equivalent force due to the voltage applied to the piezo-actuators is defined as 
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(32) 
4 I 

t a  

Q = 2E, - GA,d 

In the above equation, the input voltage Vrequired for actuator has been calculated using a 
constant gain feedback control algorithm, and can be expressed as 

V = G d  (33) 
Solving eqs. (30) and (31) and satisfying the following two boundary conditions eq. (34) and 
(353) 

w, = 6  a tx=  ! 
w, = w 2 ,  w; =w; at x =e, 

we have 
w1 = Acosklx+ Bsinklx+6 
w2 = 6 (1 - a)  (1 - cos k2x) 

where 
A = -B tan k,! 

s [cos k,! , + (1 -cos k,! ,)a]cos k,! 
sin k, e B =  

(34) 
(35) 

Using the second equation in eq. ( 3 9 ,  the transcendental equation for calculating the critical load 
is given by 

k sink,!, 
2 =tank,!, 

a 
1-a 

k2 COSk2e, +- 
(37) 

where 
k: = P/(E616) = P/(El ) l  k l  = P/ (  E,I,  + E616 ) = P/(EI)2  (38) 

In the case of the beam without voltage applied from piezoelectric actuators, a = 0, the critical 

buckling load is calculated fiom 

k, /k2 = tank,f, tank,!, (39) 

The eq. (39) has been reported in a book by Timoshenko and Gere (1961). 

If the piezoelectric actuators cover the entire beam length, !, = e ,  the buckling equation reduces 
to 

k,! = cos-’[ 2- 
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For a simply supported beam covered partially by a piezoactuator and subjected an axial 

compressive load P, the buckling load for the odd buckling mode shapes can be calculated fiom 

eq. (39)byletting e, = a l 2 , l ,  =(Z-a)/2. 

t / f V / / / A / / / / /  
I -b P 

I---" VI+ i[ u2 7 
_-_-- - --_._ P 

Fig. 2 A simply supported beam with piezoelectric actuators under axial compressive load 

Numerical Results and Discussion 

The buckling load calculation described by eq. (1 3) is functions of bending rigidity ratio, 
(E42/@41, d, and the piezoelectric force parameter expressed by Q. Fig. 3 shows the buckling 
increase as a h c t i o n  of Q! P: with three different bending rigidity ratios for ah' = % and 118 
respectively. P:is the critical buckling load for the host beam. For Q = 0, the buckling load 
increase is due to the added piezoelectric materials only. For the range of piezoelectric force 
parameter studied, the enhancement of critical buckling load can reach 25%. 

The buckling load calculation described by eq. (1 3) is functions of bending rigidity ratio, 
(EI)2l(EI)l, all, and the piezoelectric force parameter expressed by Q. Fig. 3 shows the buckling 
load increase as a function of Q I  P: with three different bending rigidity ratios for afl = ?4 and 
1/8 respectively. For Q = 0, the buckling load increase is due to the added piezoelectric materials 
only. For the range of piezoelectric force parameter studied, the enhancement of critical buckling 
load can reach 25%. 

Using active control, numerical calculations are carried out for a simply supported beam 
with 

The first two buckling loads of the beam with V = 0 are given by 

Based on eq. (27), Figs. 5 - 7 show the curves of load-deflection, voltage-load for geometric 
imperfection and load eccentricity, respectively. The results indicate that the first buckling load 
is eliminated. In these calculations, the following values of & are used: 

a l L = 1 / 4 ,  (EI)21(EI)l = 2  

P,: le: = 1.2999, e: le: = 4.1775 

6, l e  = 6, l a ,  = 6, la ,  = 0.2 
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Fig. 5 is for the simply supported beam with initial geometric imperfection 
wo = a, sin 71: X I  L. Without active control, V = 0, as the load P approached to 
P = Pir = 1.2999 Pdr , the deflection 4 0  I 4) increases without limit. With the active control, the 

deflection w(l14) increased indefinitely when P (s) approaches P = 5.124 P:. Note that when 

P = 5.124 Pcr , the deflection due to the active actuators, wu (0  I 2) = 0 ,  and wa (0  14) # 0 .  That 
means that the deflection w(t12) can not be controlled by the active actuators. Therefore 

0 4l14) increases without limit at P = 5.124 Pcr . 

0 

Fig. 6 shows the active control of the simply supported beam with geometric imperfection 
wo = a, sin2mIL . As P + P,, = P,, 4.1775, 

load eccentricity e. If active control is applied, it indicates that as P + 5.124 P:, 4014)  + 00 .  

It is easy to show that, with active control when P < Pz = 4.1775 = P,, , the deflection at any 
location of 0 c x L 0 is limited. Therefore, the critical load of the beam with active control is 

2 0  w(Z/4) + co. Fig. 7 is for the beam with 

0 

0 0 P,, = 4.1775 P,, . 

Similarly, numerical calculations are preformed for cantilever beam with 
a lL=1/4 ,  (EI)21(EI), = 2  

The first two buckling loads of the beam with V =  0 are given by 

c:lP: =1.2999, <:I<. =11.2533 

Based on eq. (Al5), Figs. 8-10 show the curves of load-deflection, voltage-load for geometric 
imperfection and load eccentricity, respectively. The results indicate that the first buckling load 
is eliminated. In these calculations, the following values of 6d are used: 

6, l e  = 6, la ,  = 6, la ,  = 0.2 
Figs. 8-10 show the active control of the cantilever beam with a variety of imperfections. In the 

0 , Fig. 8 indicates w(3l 14) + 00 as P + 5.124 P,, . This is due to 

wu (0)  = 0 and w, (34 I 4) z 0 as P + 5.124 P: . Since 4 0 )  can not be controlled by the active 

actuators at this value of load, the deflection w(30 I 4) increased without limit as P + 5.124 Pz . 
Figs. 9 and 10 demonstrate w(30/4) + 00 as P + 5.124 P: for the imperfections: 

w0 = a,(l -COS 3 d 2 t )  

and eccentricity e. 

It can be shown that the deflection any location of the beam is limited with active control, 
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if P < 5.124 P: . Hence, using the active control, the critical load of the cantilever beam can 

reachP = 5.124 P,, . 0 

6. 

4 

P /P,., 

2 

0 

w = a,sinxx /L 
0 

0 2 4 6 8 10 

1 
w(L 14) /a 

4- 

P /P,., 

2- 

0 10 20 30 
- pd /a, 

Fig. 4 (a) Load P and deflection w(L /4) diagram (b) P - p for a simply supported beam with 
initial geometric imperfection wo = als inxfi ,  a /L =1 /4, (EI)z /(EO1 = 2 

4.5 

3 

P /P: 

1.5 

0 

wo = a2sin2m/L 

0 5 10 15 
w(L 14) / a2 
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Fig. 5 Load P and deflection w(L /4) diagram for a simply supported beam with initial 
geometric imperfection, w, = azsin2nx/L, a /L =1 /4, (EI)2 /(EI)l = 2 

4- 

P /P,q 

0 5 10 15 
w(L /4) /e 

& 

- w(0.75L) /a1 v*o 

P 

0 20 40 
- p d / e  

Fig. 6 Simply supported beam with load eccentricity for a /L =1 /4, (EI)2 /(EO1 = 2, (a) Load P 
and deflection w(L /4) diagram, and (b) P - p diagram for a /L =1 /4, (EI)z /(EI)l= 2 

6 
wo = a,( 1 -cosm /2L) 

0 5 10 15 20 25 

6 
wo = al(l -wsm /2L) 

0 10 20 30 
Pd la, 

60 

Fig. 7 (a) Load P and deflection w(3L /4) diagram and (b) P - p diagram for cantilever beam 
with initial geometric imperfection w, = a1(1-cosnx/2L), a /L =1 /4, (EI)2 /(EI)1 =2 
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6 
wo = a3( 1 -cos3m /2L) 

4- 

P /P,q 

2- 

0 ' ' ' ' l ' ' ' ' l ' ' ' ' l ' ' ' ' l ' ' ~ ~  

Fig. 8 Load P and deflection w(3L /4) diagram for cantilever beam with initial geometric 
imperfection wo = a3(1-cos3xx/2L), Q /L =I /4, (E02 /(E01 =2 

L 

P 

0 20 40 60 
pd le 

-5 0 5 10 15 20 

Fig. 9 (a) Load P and deflection w(3L 14) diagram and (b) P - p diagram for cantilever beam with 
load eccentricity e, a /L =1 /4, (EI)2 /(EI)l =2 
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1.3 
a/L = 1/8 1 

1 

1.1 . 1.25 .... 
1.5 

1.75 

- 

- 
I I I I 

1.75 - 
1 , " ' ~ " ' " ' ' ~ ' ' '  

. I  

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 n ID0  
cr w I 1  

Fig. 10 The critical buckling load P,, vary with piezoelectric force parameter Q for different 
values of a /L and (EQz /(E01 

Conclusions 

Using piezoactuators, a technique for active buckling control of a beam with imperfections 
and eccentricity of loading has been developed. The theoretical results obtained show that the 
active control dramatically increases the load-canying capability of a beam under compressive 
load. The critical buckling load for a simply supported beam can reach the second buckling load, 
while the critical buckling load for a cantilever beam can be several times of the first buckling 
load. 
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Appendix A 

Bending of a Cantilever Beam with Active Piezoelectric Actuators. 

Consider a straight cantilever beam with two piezoelectric elements which are bonded 
symmetrically to the structure about its neutral axis. Under an axial compressive load P without 
eccentricity, and moments applied by the piezoactuators on part of the beam. The differential 
equations for the deflection curve are 

(EaI ,  +EbIb)u"=P(  S - w ) - M , ,  for 0 c x c  e, (Al) 

EbIbW"= P( 6 - w), for P, < x c  e (W 
where 6 is the deflection at the end x =e .  

expressed in the form 
Taking into account of the conditions at the ends of the beam, the solution can be 

(A31 

(A41 

w = ( 6 - p d  )( 1 - cosk,x ) , 

w = D( - tan k, e cos k,x + sin k,x ) + S , 
for 0 c x < e, 

for e, x c e 
where p = 2E, A , h  / P . Because the deflection curve is continuous at point x = 12 , the continuity 
conditions determine the constants D and S, that is, 

where 

A =  

sink,4', 
cos k, k' 

- cosk,!, 

k, cos k, e , 
k, cos k,! 

-sink,!, 

4 
b2 = [' - sin cos k, k2e e 

The equation det A = I A I = 0 leads to 

k 
sink,[, sink,[, -2 cosk,-t, cosk,!, = 0 

k2 

which yields the buckling loads for the idea cantilever beam with non active actuators ( V =  0). 

Bending of Cantilever Beam with Initial Imperfections 

An initial shape of a cantilever beam can be approximated by a series form 
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nnx rn 

w,= c un(l-cos-) 
n=1.3,5 21 

For simplicity, let w,, be the arbitrary term 

n m  
21 

w, = an ( 1 - cos - ), n = 1,3,5, 

The deflection of the beam due to deformation, w, can be expressed as 

nnx 
21 

w = (a, f 2  - S)COS k2x - an f ,  COS- + 6 ,  for 0 e x e e, 

n m  
w=D(-tank,Zcosk,x + sink,x) - anf,cos-+6, for e, < x < e 

21 

where 

b, = - ( f 2   COS-+ n d 2  f 2 C O S k 2 t 2  

2e 

a2 

n -a2 , f 2 =  2 
a, 

n -a, 7 f,= 2 

P a, = 
n2(E,Ib)/4t2 ’ z2(E,I, + EbIb)/412 

P a, = 

Bending of Cantilever Beam with Axial Load Eccentricity 

Letting e be the eccentricity in loading, the deflection curve is 

w = (6 + e)(l - cos k,x) , for 0 e x c e, 
D sin k,! + e 

cos k, e w = -  cosklx+Dsink,x+6+e, for e 2  e x e l  

where 
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cosk,!, 
cos k, I 

b, = -cask,!, + 

k, sink,! 
k, cask,! 

b, =sink,[, -- 

Active Buckling Control of Cantilever Beam 

Using piezoactuators, control of the deflection of the center of a clamped beam can be 
carried out. For a cantilever beam with imperfections, or eccentricity of loading, we may control 
the deflection at the end x = I to eliminate the first buckling load, and increase the load-bearing 
capability of the beam. The procedure is given below. 

Suppose both compressive load and voltage are applied to the beam, according to 
superposition, the total deflection 6 at x = k' is 

6 = & +  & (A141 
where & is the deflection of the end due to the compressive load P ( V  = 0), which can be 
measured by the sensor, & the deflection due to the voltage calculated for a straight beam. Based 
on the above equation, an active buckling control of buckling of a cantilever beam may be stated 
in the following: 

If IS,,,l> 16, I ,  & is the allowable deflection at the end x = k' under design load, then the 
actuators are to be active, and the applied voltage is given by 

& + & = & I  (A1 5 )  
The equation indicates that the active actuators enforce the end of the beam to back to the 
allowable position. It may be rewritten as 

(A1 6 )  w= - 'm- 'd 

' a  

i f 4  is expressed as S, = ms?, . 

the first buckling mode is eliminated. The deflection w of the beam is 
For a cantilever beam with imperfections, or eccentricity in loading, it can be proved that 

(A1 7) w = W, + Wm 

where Wm is the deflection of the real beam due to the compressive load P ( V  = 0), W, the 
deflection due to the voltage calculated for a straight beam. With the value of voltage provided 
by the controlling equation, the above equation shows that the buckling load can be increased as 
several times of the critical loading of the idea beam (Y = 0). If compressive load is below the 
buckling load, the deflection of the beam is finite, and the applied voltage is finite too. 
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